
The Cross-Platform Developing Skills for Mac
Applications

Xiao Hanyu1

October 17, 2009

1Computer Science and Technology 0706, Zhejiang University

Contents

1 Basics of Mac Platform 3
1.1 Mac OS and iPhone . 3

1.1.1 Introduction to Mac OS . 3
1.1.2 Introduction to iPhone OS . 3
1.1.3 iPhone and iPod Touch . 6

1.2 Before Developing . 6
1.2.1 Darwin (operating system) . 6
1.2.2 Cocoa API . 7
1.2.3 POSIX . 7

1.3 Developing Tools . 7
1.3.1 Xcode . 7
1.3.2 Interface Builder . 8

1.4 Objective-C . 8
1.4.1 Introduction to Objective-C . 8
1.4.2 A Short History of Objective-C 9
1.4.3 Syntax Overview . 10

2 The Cross-Platform Solution 11
2.1 Cygwin . 11
2.2 Cross-compiling . 11
2.3 Makefile . 13
2.4 GNUstep . 15

2.4.1 Introduction to GNUstep . 15
2.4.2 The Correlative OpenStep . 16

1

CONTENTS CONTENTS

2.4.3 Gorm . 16
2.4.4 ProjectCenter . 17
2.4.5 Window Maker . 17

3 Our First "Hello World" Application on iPhone OS 19

2

Chapter 1

Basics of Mac Platform

1.1 Mac OS and iPhone

1.1.1 Introduction to Mac OS

Mac OS is the trademarked name for a series of graphical user interface-
based operating systems developed by Apple Inc. (formerly Apple Computer,
Inc.) for their Macintosh line of computer systems. The Macintosh user expe-
rience is credited with popularizing the graphical user interface. The original
form of what Apple would later name the "Mac OS" was the integral and un-
named system software first introduced in 1984 with the original Macintosh,
usually referred to simply as the System software. It was a trimmed-down ver-
sion of the operating system underpinning Apple's earlier Lisa product.

1.1.2 Introduction to iPhone OS

The iPhone OS, known as OS X iPhone in its early history, is the operating
system developed by Apple Inc. for the iPhone and iPod touch. Like Mac OS
X, from which it was derived, it uses the Darwin foundation.iPhone OS has four
abstraction layers:

1. the Core OS layer

2. the Core Services layer

3. the Media layer

4. the Cocoa Touch layer

3

http://en.wikipedia.org/wiki/Macintosh

1.1. MAC OS AND IPHONE CHAPTER 1. BASICS OF MAC PLATFORM

The operating system takes less than 240 Megabytes of the device's total mem-
ory storage.

The central processing unit used in the iPhone and iPod Touch is an ARM-
based processor instead of the x86 (and previous PowerPC or MC680x0) proces-
sors used in Apple's Macintosh computers, and it uses OpenGL ES rendering by
the PowerVR 3D graphics hardware accelerator co-processor. Mac OS X appli-
cations cannot be copied to and run on an iPhone OS device. They need
to be written and compiled specifically for the iPhone OS and the ARM
architecture. However, the Safari web browser supports "web applications" as
noted below. Authorized third-party native applications are available for devices
with iPhone OS 2.0 and later through Apple's App Store.

iPhone SDK

On October 17, 2007, in an open letter posted to Apple's "Hot News" we-
blog, Steve Jobs announced that a software development kit (SDK) would be
made available to third-party developers in February 2008. The SDK was re-
leased on March 6, 2008, and allows developers to make applications for the
iPhone and iPod Touch, as well as test them in an "iPhone simulator". However,
loading an application onto the devices is only possible after paying an iPhone
Developer Program fee. Since the release of Xcode 3.1, Xcode is the develop-
ment environment for the iPhone SDK.

Developers are able to set any price above a set minimum for their applica-
tions to be distributed through the App Store, of which they will receive a 70%
share. Alternately, they may opt to release the application for free and need not
pay any costs to release or distribute the application except for the membership
fee.

SDK contents

As the iPhone OS uses a variant of the same XNU kernel that is found in
Mac OS X, the tool chain used for developing on the iPhone OS is also based on
Xcode.[4]

The SDK is broken down into the following sets:

1. Cocoa Touch

(a) Multi-touch events and controls
(b) Accelerometer support
(c) View hierarchy

4

http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/X86
http://en.wikipedia.org/wiki/PowerPC
http://en.wikipedia.org/wiki/MC68000
http://en.wikipedia.org/wiki/OpenGL_ES
http://en.wikipedia.org/wiki/PowerVR
http://en.wikipedia.org/wiki/Safari_(web_browser)
http://en.wikipedia.org/wiki/App_Store

1.1. MAC OS AND IPHONE CHAPTER 1. BASICS OF MAC PLATFORM

(d) Localization (i18n)
(e) Camera support

2. Media

(a) OpenAL
(b) audio mixing and recording
(c) Video playback
(d) Image file formats
(e) Quartz
(f) Core Animation
(g) OpenGL ES

3. Core Services

(a) Networking
(b) Embedded SQLite database
(c) Core Location
(d) Threads

4. OS X Kernel

(a) TCP/IP
(b) Sockets
(c) Power management
(d) File system
(e) Security

Along with the Xcode toolchain, the SDK contains the iPhone Simulator, a
program used to emulate the look and feel of the iPhone on the developer's
desktop. Originally called the Aspen Simulator, it was renamed with the Beta 2
release of the SDK. Note that the iPhone Simulator is not an emulator and runs
code generated for an x86 target.

The SDK requires an Intel Mac running Mac OS X Leopard or later. Other
operating systems, including Microsoft Windows and older versions of Mac OS
X, are not supported.

5

1.2. BEFORE DEVELOPING CHAPTER 1. BASICS OF MAC PLATFORM

1.1.3 iPhone and iPod Touch

The iPhone is an Internet and multimedia enabled smartphone designed and
marketed by Apple Inc. Because its minimal hardware interface lacks a physical
keyboard, the multi-touch screen renders a virtual keyboard when necessary.
The iPhone functions as a camera phone (also including text messaging and vi-
sual voicemail), a portable media player (equivalent to a video iPod), and an
Internet client (with email, web browsing, and Wi-Fi connectivity). The first-
generation phone hardware was quad-band GSM with EDGE; the second gen-
eration added UMTS with 3.6 Mbps HSDPA; the third generation adds support
for 7.2 Mbps HSDPA downloading but remains limited to 384 Kbps uploading as
Apple had not implemented the HSPA protocol.

The iPod Touch(trademarked and marketed as iPod touch) is a portable me-
dia player, personal digital assistant, and Wi-Fi mobile platform designed and
marketed by Apple Inc. The product was launched on September 5, 2007 at an
event called The Beat Goes On. The iPod Touch adds the multi-touch graphical
user interface to the iPod line. It is the first iPod with wireless access to the
iTunes Store, and also has access to Apple's App Store, enabling content to be
purchased and downloaded directly on the device.

The iPod Touch and the iPhone, a smartphone by Apple, share the same
hardware platform and run the same iPhone OS operating system. The iPod
Touch lacks some of the iPhone's features such as access to cellular networks
and a built-in camera (and microphone on older models); as a result, the iPod
Touch is slimmer and lighter than the iPhone.

1.2 Before Developing

1.2.1 Darwin (operating system)

Darwin is an open source POSIX-compliant computer operating system re-
leased by Apple Inc. in 2000. It is composed of code developed by Apple, as well
as code derived from NEXTSTEP, BSD, and other free software projects.

Darwin forms the core set of components upon which Mac OS X and iPhone
OS are based. It is compatible with the Single UNIX Specification version 3
(SUSv3) and POSIX UNIX applications and utilities.

6

1.3. DEVELOPING TOOLS CHAPTER 1. BASICS OF MAC PLATFORM

1.2.2 Cocoa API

Cocoa is one of Apple Inc.'s native object-oriented application program en-
vironments for the Mac OS X operating system. It is one of five major APIs
available for Mac OS X; the others are Carbon (deprecated), POSIX(for the BSD
environment), X11 and Java.

Cocoa applications are typically developed using the development tools pro-
vided by Apple, specifically Xcode(formerly Project Builder), and Interface Build-
er, using the Objective-C language.

1.2.3 POSIX

POSIX ["Portable Operating System Interface for Unix"] is the name of a
family of related standards specified by the IEEE to define the application pro-
gramming interface (API), along with shell and utilities interfaces for software
compatible with variants of the Unix operating system, although the standard
can apply to any operating system.

1.3 Developing Tools

1.3.1 Xcode

Xcode is a suite of tools for developing software on Mac OS X, developed
by Apple. Xcode 3.2, the latest major version, is bundled free with Mac OS X
v10.6, but is not installed by default. Because version 3.2 is not supported on
older Mac OS versions, more dated versions of Xcode are free from the Apple
Developer Connection.

The main application of the suite is the integrated development environment
(IDE), also named Xcode. The Xcode suite also includes most of Apple's de-
veloper documentation, and Interface Builder, an application used to construct
graphical interfaces.

The Xcode suite includes a modified version of free software GNU Compiler
Collection (GCC, apple-darwin9-gcc-4.2.1 as well as apple-darwin9-gcc-4.0.1,
with the former being the default), and supports C, C++, Fortran, Objective-C,
Objective-C++, Java, AppleScript, Python and Ruby source code with a variety
of programming models, including but not limited to Cocoa, Carbon, and Java.
Third parties have added support for GNU Pascal, Free Pascal, Ada, C#, Perl,
Haskell, and D. The Xcode suite uses GDB as the back-end for its debugger.

7

http://en.wikipedia.org/wiki/Carbon_(API)
http://en.wikipedia.org/wiki/X11
http://en.wikipedia.org/wiki/Java_(software_platform)
http://en.wikipedia.org/wiki/Xcode
http://en.wikipedia.org/wiki/Interface_Builder
http://en.wikipedia.org/wiki/Interface_Builder
http://en.wikipedia.org/wiki/Objective-C
http://standards.ieee.org/regauth/posix/
http://www.gnu.org/software/gdb/

1.4. OBJECTIVE-C CHAPTER 1. BASICS OF MAC PLATFORM

Figure 1.1: Xcode

1.3.2 Interface Builder

Interface Builder is a software development application for Apple's Mac OS
X operating system. It is part of Xcode (formerly Project Builder), the Apple
Developer Connection developer's toolset. Interface Builder allows Cocoa and
Carbon developers to create interfaces for applications using a graphical user
interface. The resulting interface is stored as a .nib file, short for NeXT Interface
Builder, or more recently, as a .xib file.

Interface Builder is descended from the NeXTSTEP development software
of the same name. A version of Interface Builder is also used in the development
of OpenStep software, and a very similar tool called Gorm exists for GNUstep.
On March 27, 2008, a specialized iPhone version of Interface Builder allowing
interface construction for iPhone applications was released with the iPhone SDK
Beta 2.

1.4 Objective-C

1.4.1 Introduction to Objective-C

Objective-C is a reflective, object-oriented programming language, which
adds Smalltalk-style messaging to the C programming language.

Today it is used primarily on Apple's Mac OS X and iPhone OS: two environ-

8

1.4. OBJECTIVE-C CHAPTER 1. BASICS OF MAC PLATFORM

Figure 1.2: Interface Builder

ments based on, although not compliant with, the OpenStep standard. Objective-
C is the primary language used for Apple's Cocoa API, and it was originally used
as the main language on NeXT's NeXTSTEP OS. Generic Objective-C programs
which do not make use of these libraries can also be for any system supported
by gcc, which includes an Objective-C compiler.

More precisely, Cocoa is the implementation by Apple, for MacOS X, of the
OpenStep standard, originally published in 1994. It consists of a developer
framework based upon Objective-C. The GNUstep project is another implemen-
tation, which is free. Its goal is to be as portable as possible on most Unix
systems, and is still under development [5].

1.4.2 A Short History of Objective-C

A rough history is given in Figure 1.3 to get a quick look at Objective-C
amongst its ancestors and "challengers".

Brad J. Cox designed the Objective-C language in the early 1980s. The lan-
guage was based on a language called SmallTalk-80. Objective-C was layered on
top of the C language, meaning that extensions were added to C to create a new
programming language that enabled objects to be created and manipulated.

NeXT Software licensed the Objective-C language in 1988 and developed its
libraries and a development environment called NEXTSTEP. In 1992, Objective-

9

1.4. OBJECTIVE-C CHAPTER 1. BASICS OF MAC PLATFORM

Figure 1.3: Timeline of Java, C, C++ and Objective-C

C support was added to the Free Software Foundation’s GNU development en-
vironment.This software is in the public domain, which means that anyone who
wants to learn how to program in Objective-C can do so by downloading its tools
at no charge.

In 1994, NeXT Computer and Sun Microsystems released a standardized
specification of the NEXTSTEP system, called OPENSTEP.The Free Software
Foundation’s implementation of OPENSTEP is called GNUStep.A Linux version,
which also includes the Linux kernel and the GNUStep development environ-
ment, is called, appropriately enough, LinuxSTEP.

On December 20, 1996,Apple Computer announced that it was acquiring
NeXT Software, and the NEXTSTEP/OPENSTEP environment became the basis
for the next major release of Apple’s operating system, OS X.Apple’s version
of this development environment was called Cocoa.With built-in support for the
Objective-C language, coupled with development tools such as Project Builder
(or its successor Xcode) and Interface Builder,Apple created a powerful devel-
opment environment for application development on Mac OS X.

In 2007,Apple released an update to the Objective-C language and labeled
it Objective-C 2.0 [6].

1.4.3 Syntax Overview

10

Chapter 2

The Cross-Platform Solution

2.1 Cygwin
Cygwin is a Linux-like environment for Windows. It consists of a DLL (cyg-

win1.dll), which acts as an emulation layer providing substantial POSIX1(Port-
able Operating System Interface) system call functionality, and a collection of
tools, which provide a Linux look and feel. The Cygwin DLL works with all x86
versions of Windows since Windows 95. The API follows the Single Unix Speci-
fication2 as much as possible, and then Linux practice. Two other major differ-
ences between Cygwin and Linux are the C library (newlib instead of glibc) and
default /bin/sh, which is ash on Cygwin but bash on most Linux distributions.

With Cygwin installed, users have access to many standard UNIX utilities.
They can be used from one of the provided shells such as bash or from the Win-
dows Command Prompt. Additionally, programmers may write Win32 console
or GUI applications that make use of the standard Microsoft Win32 API and/or
the Cygwin API. As a result, it is possible to easily port many significant UNIX
programs without the need for extensive changes to the source code. This in-
cludes configuring and building most of the available GNU software (including
the development tools included with the Cygwin distribution) [1].

2.2 Cross-compiling
A compiler is a program that turns source code into executable code. Like all

programs, a compiler runs on a specific type of computer, and the new programs
it outputs also run on a specific type of computer.

The computer the compiler runs on is called the host, and the computer the
new programs run on is called the target. When the host and target are the same

11

2.2. CROSS-COMPILING CHAPTER 2. THE CROSS-PLATFORM SOLUTION

Figure 2.1: Cygwin

type of machine, the compiler is a native compiler. When the host and target are
different, the compiler is a cross compiler [3].

To develop an application running on iPhone OS in linux or windows envi-
ronment, we need cross-compiling, here, the windows or linux platform is the
host, and iPhone OS is the target.

The gnu toolchains is one of the best cross-compiling tools including gcc,
which is one of the most powerful compiler, supporting various languages, cross-
platform, free, and open-source.

Here gives a solution to build an cross-compiling platform in ubuntu linux
and windows xp environment.

Figure 2.2: iPhone toolchain, Cross-compiling environment

Make sure you have the following directory structure in you $HOME direc-
tory [2]:

You can also build iPhone application through some IDE, such as Eclipse [4].
If you are lucky, you are already got an application that can run in iPhone

OS.

12

http://www.iphonetoolchain.cn/viewthread.php?tid=18&extra=page%3D1

2.3. MAKEFILE CHAPTER 2. THE CROSS-PLATFORM SOLUTION

Figure 2.3: the directory structure of our cross-compiling environment

1 cd ~/iphone−2.0−toolchain /examples /GUI/HelloWorldiPhone
2 make

Then copy the HelloWorld.app to /Applications directory of your iPhone OS,
type the following commands through SCP terminal:

1 chmod −R 755 / Applications /HelloWorld .app
2 ldid −S / Applications /HelloWorld .app/HelloWorld

Restart the iPhone, run the HelloWorld application, if you are lucky, we'll
see the following exciting snapshot:

Now let's start to analyse the source code of HelloWorld.app. First we must
know something about GNU make and makefile.

2.3 Makefile
The purpose of the make utility is to determine automatically which pieces

of a large program need to be recompiled, and issue the commands to recompile
them.

To prepare to use make, you must write a file called the makefile that de-
scribes the relationships among files in your program, and the states the com-
mands for updating each file. In a program, typically the executable file is up-
dated from object files, which are in turn made by compiling source files.

In general, makefile defines a dependency tree and some targets, including

13

2.3. MAKEFILE CHAPTER 2. THE CROSS-PLATFORM SOLUTION

Figure 2.4: HelloWorld

a final target, thus you can type make to finish automatical compiling, make
tarballs, delete the cache, and so on [7].

The Makefile for HelloWorld.app is as following:

1 CC=/usr / local / bin /arm−apple−darwin9−gcc
2 CXX=/usr / local / bin /arm−apple−darwin9−g++
3 LD=$(CC)
4

5 CFLAGS=−I / usr / local / l ib /gcc /arm−apple−darwin9/4.2.1/ include
\

6 −isysroot / usr / local / iphone−sysroot
7

8 LDFLAGS=−framework CoreFoundation −framework Foundation −
framework UIKit \

9 −lobjc −bind_at_load −isysroot / usr / local / iphone−
sysroot

10

11 a l l : HelloWorld .app
12

13 HelloWorld .app: HelloWorld Info . p l i s t

14

2.4. GNUSTEP CHAPTER 2. THE CROSS-PLATFORM SOLUTION

14 mkdir −p HelloWorld .app
15 cp Info . p l i s t HelloWorld Default .png icon .png

HelloWorld .app/
16

17 HelloWorld : HelloWorld .o HelloWorldApp.o
18 $(LD) $(LDFLAGS) −o $@ $̂
19

20 %.o: %.m
21 $(CC) −c $(CFLAGS) $(CPPFLAGS) $< −o $@
22

23 clean :
24 rm −rf * .o HelloWorld HelloWorld .app

The first three line defines three varibles which refers to the c compiler, c
++ compiler, and linker, respectively. We can see that the compiler and linker
defined in this Makefile is based on darwin foundation from it's name: arm-
apple-darwin9.

Later, line 5 and 8 defined the options for compiling and linking.
Line 10, defines the default target: all, which depends HelloWorld.app.
Here $@, $ˆ and $< is the automatic variable [7].
Clean is a phony target, namely, an action, but not a file. "make clean"

defines how to clean the corresponding files in order to rebuild the system.

2.4 GNUstep

2.4.1 Introduction to GNUstep

GNUstep is a free software implementation of NeXT's OpenStep Objective-C
libraries (called frameworks), widget toolkit, and application development tools
not only for Unix-like operating systems, but also for Microsoft Windows. It is
part of the GNU Project.

GNUstep features a cross-platform, object-oriented development environ-
ment based on and completely compatible with the OpenStep specification de-
veloped by NeXT (which has since been bought by Apple Inc.) and Sun Mi-
crosystems. Like Apple, GNUstep also has a Java interface to OpenStep, as well
as Ruby and Scheme bindings. The GNUstep developers track some additions
to Apple's Cocoa to remain compatible. The roots of the GNUstep application
interface are the same as the roots of Cocoa: NeXT and OpenStep. GNUstep

15

http://en.wikipedia.org/wiki/NeXT
http://en.wikipedia.org/wiki/OpenStep
http://en.wikipedia.org/wiki/GNU_Project
http://en.wikipedia.org/wiki/NeXT

2.4. GNUSTEP CHAPTER 2. THE CROSS-PLATFORM SOLUTION

predates Cocoa.

2.4.2 The Correlative OpenStep

OpenStep

OpenStep was an object-oriented application programming interface (API)
specification for an object-oriented operating system that uses any modern oper-
ating system as its core, principally developed by NeXT with Sun Microsystems.
OPENSTEP (all capitalized) was a specific implementation of the OpenStep API
developed by NeXT. While originally built on a Mach-based Unix (such as the
core of NEXTSTEP), versions of OPENSTEP were available for Solaris and Win-
dows NT as well. The software libraries that shipped with OPENSTEP are a
superset of the original OpenStep specification.

2.4.3 Gorm

Gorm(Graphical Object Relationship Modeller)is a graphical interface build-
er application. It is part of the developer tools of GNUstep.

Gorm is the equivalent of Interface Builder that was originally found on
NeXTSTEP, then OPENSTEP, and finally on Mac OS X. Interface Builder was
believed by many who have used it to be far ahead of its time. Interface Builder,
together with Project Builder (now rewritten as Xcode in Mac OS X versions
after Mac OS X v10.3), formed one of the most productive, clean and coherent
programming environments and was surely part of the success of the various
operating systems that used it.

Gorm and Project Center represent the heart of the suite for GNUstep. Gorm
follows Interface Builder so closely that using tutorials written for the latter is
possible without much hassle and thus brings the power of Interface Builder to
the open source world being part of the GNU project.

Gorm allows developers to quickly create graphical applications and to de-
sign every little aspect of the application's user interface. The developer can
drag and drop all types of objects like menus, buttons, tables, lists and browsers
into to the interface. With the mouse it is possible to resize, move or convert
the objects or connect them to functions as well as to edit nearly every aspect
of them using Gorm's powerful inspectors.

16

http://en.wikipedia.org/wiki/Mach_kernel

2.4. GNUSTEP CHAPTER 2. THE CROSS-PLATFORM SOLUTION

Figure 2.5: Gorm

2.4.4 ProjectCenter

ProjectCenter is GNUstep's integrated developement environment (IDE). It
is based in part on NeXT's original Project Builder. It assists you in starting new
projects and lets you manage your project files using a intuitive and well ordered
graphical user interface.

Supporting the project types 'Application', 'Bundle', 'Library', 'Tool', and 'Ag-
gregate', ProjectCenter automatically creates the project makefiles and aids you
in the process of editing, project compilation, package building and debugging.
In the future, built-in CVS support will be available, too.

2.4.5 Window Maker

Window Maker is an X11 window manager originally designed to provide in-
tegration support for the GNUstep Desktop Environment. In every way possible,
it reproduces the elegant look and feel of the NEXTSTEP[tm] user interface. It
is fast, feature rich, easy to configure, and easy to use. It is also free software,
with contributions being made by programmers from around the world.

17

2.4. GNUSTEP CHAPTER 2. THE CROSS-PLATFORM SOLUTION

Figure 2.6: Project Center

Figure 2.7: Window Maker

18

Chapter 3

Our First "Hello World"
Application on iPhone OS

Nowwe show the source code of our first "HelloWorld" application on iPhone
[4].

HelloWorldApp.h:

1 / /
2 / / HelloWorldApp.h
3 / / HelloWorld
4 / /
5 / / Created by PJ Cabrera on 08/18/2008.
6 / / Copyright PJ Cabrera 2008. All rights reserved .
7 / /
8

9 #import <UIKit /UIKit .h>
10

11 @interface HelloWorldApp : UIApplication {
12 UIWindow *window;
13 UIView *contentView;
14 UINavigationBar *nav;
15 UITextView *text ;
16 }
17

18 @end

HelloWorldApp.m:

1 / /

19

CHAPTER 3. OUR FIRST "HELLO WORLD" APPLICATION ON IPHONE OS

2 / / HelloWorldApp.m
3 / / HelloWorld
4 / /
5 / / Created by PJ Cabrera on 08/18/2008.
6 / / Copyright PJ Cabrera 2008. All rights reserved .
7 / /
8

9 #import "HelloWorldApp.h"
10

11 @implementation HelloWorldApp
12

13 − (void)applicationDidFinishLaunching : (UIApplication *)
application {

14 / / Create a " ful l−screen" window to hold the UI.
15 window = [[UIWindow alloc] initWithContentRect :
16 [UIHardware fullScreenApplicationContentRect

]] ;
17

18 / / Create a view to hold the window contents .
19 contentView = [[UIView alloc] initWithFrame :

CGRectMake(0.0 f , 0.0f , 320.0f , 480.0 f)] ;
20

21 / / Create a navigation bar for the top of the view ,
with two buttons .

22 / / The buttons do not do anything in this example .
23 nav = [[UINavigationBar alloc] initWithFrame :

CGRectMake(0.0 f , 0.0f , 320.0f , 48.0 f)] ;
24 [nav pushNavigationItem : [[UINavigationItem alloc]

initWithTitle :@"HelloWorld"]] ;
25 [nav showButtonsWithLeftTitle : @"Left " rightTitle : @

"Right" leftBack : YES] ;
26 [nav setBarStyle : 0];
27 [contentView addSubview: nav] ;
28

29 / / Create a text view , this is a basic text editor ,
with incorporated keyboard .

30 text = [[UITextView alloc] initWithFrame : CGRectMake
(0.0 f , 48.0f , 320.0f , 480.0 f)] ;

31 [text setText : [[NSString alloc]

20

CHAPTER 3. OUR FIRST "HELLO WORLD" APPLICATION ON IPHONE OS

32 initWithString : @"Hello�World\nCocoa�Touch�
Application"]] ;

33 [contentView addSubview: text] ;
34

35 / / UIWindow con only hold one view , the contentView .
The contentView can hold many

36 / / navigation controllers , which control the
different views in your application .

37 window.contentView = contentView;
38

39 / / These three instructions effectively show the
window.

40 [window orderFront : sel f] ;
41 [window makeKey: sel f] ;
42 [window _setHidden : NO] ;
43 }
44

45 − (void) dealloc {
46 / / Release the UI elements as they were allocated
47 [text release] ;
48 [nav release] ;
49 [contentView release] ;
50 [window release] ;
51

52 / / And don ' t forget to cal l the parent class dealloc
53 [super dealloc] ;
54 }
55

56 @end

HelloWorld.m:

1 / /
2 / / HelloWorldApp.h
3 / / HelloWorld
4 / /
5 / / Created by PJ Cabrera on 08/18/2008.
6 / / Copyright PJ Cabrera 2008. All rights reserved .
7 / /
8

21

CHAPTER 3. OUR FIRST "HELLO WORLD" APPLICATION ON IPHONE OS

9 #import <Foundation /Foundation .h>
10 #import <UIKit /UIKit .h>
11 #import "HelloWorldApp.h"
12

13 int main(int argc , char *argv []) {
14 / / This autorelease pool is managed by the UI ' s

event dispatcher . I t autoreleases
15 / / any allocated objects that f a l l out of scope . The

iPhone ' s implementation of
16 / / Objective−C 2.0 does not have garbage collection

yet , but autorelease pools and
17 / / proper release of allocated objects is s t i l l a

good practice .
18 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc]

in i t] ;
19

20 / / This is where UI execution gets started . This
instantiates the UIApplication

21 / / subclass and UIApplicationDelegate subclass
specified as string parameters .

22 / / The name of an UIApplication subclass can be
passed as both UIApplication and

23 / / UIApplicationDelegate .
24 UIApplicationMain(argc , argv , @"HelloWorldApp" , @"

HelloWorldApp") ;
25

26 / / Force release of the autorelease pool and a l l
objects s t i l l allocated .

27 [pool release] ;
28 return 0;
29 }

22

Bibliography

[1] Cygwin user's guide. http://cygwin.com/cygwin-ug-net/.

[2] Develop iphone application in linux. Website. http://www.
iphonetoolchain.cn/viewthread.php?tid=18&extra=page%3D1.

[3] Introduction to cross-compiling for linux. Website. http://landley.net/
writing/docs/cross-compiling.html.

[4] PJ Cabrera. 使用eclipse cdt编写本机 iphone应用程序.Website, 2008. http://
www.ibm.com/developerworks/cn/edu/os-dw-os-eclipse-iphone-cdt.
html.

[5] Pierre Chatelier. From c++ to objective-c, 2005.

[6] Stephen G. Kochan. Programming in Objective-C 2.0. Addison-Wesley, 2009.

[7] 陈皓.跟我一起写makefile.

23

http://cygwin.com/cygwin-ug-net/
http://www.iphonetoolchain.cn/viewthread.php?tid=18&extra=page%3D1
http://www.iphonetoolchain.cn/viewthread.php?tid=18&extra=page%3D1
http://landley.net/writing/docs/cross-compiling.html
http://landley.net/writing/docs/cross-compiling.html
http://www.ibm.com/developerworks/cn/edu/os-dw-os-eclipse-iphone-cdt.html
http://www.ibm.com/developerworks/cn/edu/os-dw-os-eclipse-iphone-cdt.html
http://www.ibm.com/developerworks/cn/edu/os-dw-os-eclipse-iphone-cdt.html

List of Figures

1.1 Xcode . 8
1.2 Interface Builder . 9
1.3 Timeline of Java, C, C++ and Objective-C 10

2.1 Cygwin . 12
2.2 iPhone toolchain, Cross-compiling environment 12
2.3 the directory structure of our cross-compiling environment 13
2.4 HelloWorld . 14
2.5 Gorm . 17
2.6 Project Center . 18
2.7 Window Maker . 18

24

Index

Cocoa API, 7
Cross-compiling, 11
Cygwin, 11

Darwin, 6

GNUstep, 15
Gorm, 16

Interface Builder, 8
iPhone, 6
iPhone OS, 3
iPhone SDK, 4
iPod Touch, 6

Mac OS, 3
make, 13

NeXTSTEP, 8

Objective-C, 8
OpenStep, 16

POSIX, 7
ProjectCenter, 17

Window Maker, 17

Xcode, 7

25

	1 Basics of Mac Platform
	1.1 Mac OS and iPhone
	1.1.1 Introduction to Mac OS
	1.1.2 Introduction to iPhone OS
	1.1.3 iPhone and iPod Touch

	1.2 Before Developing
	1.2.1 Darwin (operating system)
	1.2.2 Cocoa API
	1.2.3 POSIX

	1.3 Developing Tools
	1.3.1 Xcode
	1.3.2 Interface Builder

	1.4 Objective-C
	1.4.1 Introduction to Objective-C
	1.4.2 A Short History of Objective-C
	1.4.3 Syntax Overview

	2 The Cross-Platform Solution
	2.1 Cygwin
	2.2 Cross-compiling
	2.3 Makefile
	2.4 GNUstep
	2.4.1 Introduction to GNUstep
	2.4.2 The Correlative OpenStep
	2.4.3 Gorm
	2.4.4 ProjectCenter
	2.4.5 Window Maker

	3 Our First "Hello World" Application on iPhone OS

